
AlphaLink Engineering GmbH
Bismarckstraße 10-12
10625 Berlin

Hardware-in-the-Loop Simulator
Turn your Flying Lab into a Full Simulator

Manual

Version: 2.0
Date: October 31, 2023

Terms and Conditions

The Hardware-in-the-Loop (HiL) for the AlphaLink Flying Lab consists of software and hard-
ware for experimental purposes. The software is provided on a USB stick. The MATLAB/
Simulink model may not be copied or redistributed in whole or part. One copy per set is al-
lowed for internal use only. Publications that refer to the supplied MATLAB/Simulink model
must always be made with reference to this manual.
Note: The current version of the HiL is designed for computers with MS Windows as opera-
tional system and is tested with MATLAB R2017b. Downward compatibility is not guaranteed;
upward compatibility is not given.

The PX4 software is licensed under BSD-3. PX4: Copyright (C) 2012 - 2020, PX4 Development Team; all rights
reserved. PX4 Pro Drone Autopilot; all rights reserved. Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following conditions are met: i) Redistributions of source
code must retain the above copyright notice, this list of conditions and the following disclaimer. ii) Redistributions
in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. iii) Neither the name of GpsDrivers nor the
names of its contributors may be used to endorse or promote products derived from this software without specific
prior written permission. DISCLAIMER: This software is provided by the copyright holders and contributors "as
is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose are disclaimed. In no event shall the copyright holder or contributors be
liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited
to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however
caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise)
arising in any way out of the use of this software, even if advised of the possibility of such damage.
QGroundControl (QGC) is dual-licensed as Apache 2.0 and GPLv3.
Node.js is licensed for use as follows: Copyright Node.js contributors. All rights reserved. Permission is hereby
granted, free of charge, to any person obtaining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions: The above copyright notice and this
permission notice shall be included in all copies or substantial portions of the Software. DISCLAIMER: The
software is provided "as is", without warranty of any kind, express or implied, including but not limited to the
warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors
or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or
otherwise, arising from, out of or in connection with the software or the use or other dealings in the software.

Delivery Scope

Included in the delivery of an AlphaLink HiL are:1

1. Original Vector Informatik equipment and software:

• Flying Lab (Talon Model), incl. battery

• VN1640A CAN/LIN Network Interface, incl. 2x CANpiggy 1057Gcap (Version a) or
VN1630A CAN/LIN Network Interface (Version b) with CANterm 120,

• CANoe PRO (24-months license),

2. CAN cable,

3. Remote Control (FrSky Taranis Q X7 RC Transmitter 2.4 GHz with 16 channel, incl.
battery) and RC Receiver (FrSky R-XSR EU LBT), and

4. USB Stick with all relevant software and this manual (see the directory in Appendix A).

1Note: International shipments may not include batteries.

Contents

1 Introduction 1
1.1 Why Hardware-in-the-Loop Simulation? . 1
1.2 Quick-Start Guide . 3

1.2.1 Building up the Simulator . 3
1.2.2 Control Law Implementation . 7
1.2.3 QGroundControl . 8
1.2.4 Interface . 9
1.2.5 Simulation Model . 11
1.2.6 Virtual Flight Test Environment . 11

2 CANoe Details 13
2.1 Connection to Simulink . 13
2.2 Configuration . 13

2.2.1 GUI Setup . 13
2.2.2 DBC File . 17

2.3 Tools . 17

3 Virtual Machine Details 19
3.1 Installation . 19
3.2 Working with the Virtual Machine . 20
3.3 Additional Information . 22

4 Simulink Model 23
4.1 Overview . 23
4.2 Manipulation of Data . 25

5 Node.js 26
5.1 Overview . 26
5.2 Configuration and Start . 26

6 QGroundControl 28
6.1 Graphical User Interface . 28

6.1.1 Monitoring . 28
6.1.2 Configuration . 29
6.1.3 Log File . 30

6.2 Nutshell . 30
6.3 Resetting the Parameter Configuration . 32

A USB Stick Directory 33

1 Introduction

This manual guides the reader through the installation of a Hardware-in-the-Loop (HiL) simu-
lator for the PX4 environment. It is based on the AlphaLink Unmanned Aircraft Experimental
System (UAXS), the Flying Lab for research and teaching purposes. After a short introduction
to HiL simulation, a quick start for initiating the HiL simulation is presented.
Note: All path and file references refer to the directory as provided on the USB stick.
For a complete overview, see Appendix A. It is recommend to copy the relevant files
from the USB stick to your hard drive, while maintaining the structure of the directory.

1.1 Why Hardware-in-the-Loop Simulation?

Flight tests are expensive and time consuming. HiL simulations can increase success rates
of real flight tests and therefore ensure that the flight test works well and the invested effort
is worthwhile. This renders testing in advance highly desirable. For autonomous or remotely
piloted aircraft, testing should be as close as possible to real-world conditions and this can
only be achieved with a HiL simulator. In such HiL testing, the movement of the aircraft,
the environment, and the behavior of sensors and actuators are replaced by a mathematical
model to perform a realistic simulation. All the remaining physical components are tested with
a physical aircraft in the real world.

<

C
A

N
oe

S
of

tw
ar

e Flight Dynamic
Model (Simulink)

Sensor Model
(Simulink)

U
D

P

VFTE

Ground
Station

Left and
Right V-

Tail

Ailerons

Engine

Virtual World

<

Bridge

Figure 1: HIL Components.

The provided HiL set consists of four main components illustrated in Fig. 1:

• the aircraft,

• the interface,

• the simulation, and

• the visual.

1

The first component is the aircraft system provided by the AlphaLink UAXS. This includes
the Nano Talon as aircraft and the Pixhawk 4 Mini (Pixhawk) as flight controller inside. The
Pixhawk will be the desired target hardware to run the controller structure that shall be tested.
The aircraft system is exactly the same as for ordinary flight testing. Hence, it takes the RC
command as inputs and sends the flight data as outputs to the ground station, in this case
the software QGroundControl. The difference between the HiL simulation and the basic Flying
Lab is the modified flight stack, i.e. the Pixhawk is interacting with the simulation environment
instead of the real world. This is achieved through the interface component.
The HiL Simulator is using the CAN bus for the communication between the hardware and
the simulation loop. This CAN bus is controlled using the original hardware and software from
Vector Informatik. The interface provides the hardware with the required sensor data, while
transmitting the actuator commands from the hardware to the simulation model.
The simulation model is the third component and is running on the simulation host connected
with the software. The simulation is done using MATLAB/Simulink. It takes the actuator com-
mands and the initial start conditions for the desired testing situation as inputs. With this, the
model computes all dynamics ranging from the flight dynamics to the sensor and the actual ac-
tuator behavior. The objective is providing the sensor data of the aircraft to the flight controller
under nearly real-world conditions.
To visualize the simulated flight of the aircraft, the simulation model is connected to the Al-
phaLink Virtual Flight Test Environment (VFTE) as the fourth component. The advantage of
this simulator is the opportunity to test the controller structure directly on the target hardware
without the risk of flight accidents. The testing proceeds in a safe environment, while all re-
maining aspects from flight testing like RC control and ground monitoring through the virtual
ground station are given. In addition, the movement of the control surface can be seen in
real time at the physical aircraft model, while the resulting dynamic behavior is observed in
the VFTE. Also critical situations like sensor failure can be tested without the consequences
of any physical damage. In the end, the HiL creates completely new opportunities and helps
saving a lot of time and money.

AlphaLink provides all necessary components for turning the Flying Lab into a full simulator:
the aircraft system (the original Flying Lab), the VN1630A/VN1640A CAN Interface, a RC re-
mote control, and a custom CAN cable. Additionally, a USB stick with all the required software
is provided. This stick is named HIL MAIN and contains eight folders, of which five are central
to the HiL:

• CANoe: this subfolder contains all data relating to CANoe such as the required configu-
ration and DBC file, which is necessary for the simulation interface;

• VM HIL: the virtual machine that contains the development environment for the Pixhawk
is in this subfolder;

• Simulation Simulink: this subfolder contains the simulink model for the simulation
and all the required MATLAB scripts;

• Simulator Webserver: the source code for the implementations concerning the VFTE
and the interface to the VFTE are in this subfolder;

• Documentation: this subfolder includes all the necessary documentations, e.g. this
manual and also the manual for the basic Flying Lab.

2

In the following sections, all aspects of the supplied hardware and software will be explained.
In the quick-start guide, only the build up and the starting procedure are described; the suc-
ceeding chapters will go in detail through all the supplied software.

1.2 Quick-Start Guide

This quick start gives the basic set of instruction to safely start the simulation. It is therefore
assumed that all the required software is already installed:

✓ CANoe (PRO license, version 14.0 or newer),

✓ VMware (Workstation Pro 15 Player).

✓ MATLAB/Simulink (R2017b), including Vector CANoe library,

✓ Node.js, and

✓ QGroundControl.

An explanation regarding the required installation process and use of each software is given
in the subsequent Ch. 2 to 6.
The quick-start instructions are given in chronological order beginning with the structure and
the build up of the simulator. Afterwards, the preparation of the components and the final
initialization follow.

1.2.1 Building up the Simulator

The HiL setup consists of five main hardware components connected with three different types
of cables. The hardware components are:

• Simulation host,

• VN1630A/VN1640A Vector CAN Interface with CANterm,

• AlphaLink Flying Lab, incl. a Pixhawk 4 Mini flight controller,

• (optional) RC remote control, and

• Telemetry transceiver and battery pack (optional).

Those are connected with

• 2x micro USB cables,

• 1x USB cable type B, and

• 1x custom CAN cable.

Note: You should always treat all the physical components with due care when plugging or
unplugging cables to connect them during the build-up to avoid interrupted connections or
damages.
Building up the HiL, requires four steps.

3

1. Use the USB type B cable to connect the VN1630A/VN1640A with the host computer
(see Fig. 2). If the communication is established, the control LED of the VN1630A/
VN1640A should be flashing green.

Figure 2: VN1630A Connection to Host Computer. (VN1640A similar.)

2. Use a micro USB cable to connect the Pixhawk to the host computer. The micro USB
interface is found in the head of the aircraft (see Fig. 3).

Figure 3: Pixhawk Connection to Host computer.

4

Figure 4: Setup for the CAN Communication.

3. Connect the aircraft and the Channel 1 port of VN1630A/VN1640A box through the cus-
tom CAN cable (see Fig. 4). To prevent the risk of disconnection, the cable is mounted
inside the aircraft and already plugged in the corresponding Pixhawk interface (see
Fig. 5).2 Verify, that the termination resistance is between the VN1630A/VN1640A box
and the custom CAN cable and that the cable is plugged in channel 1 (see Fig. 6).

Figure 5: Pixhawk inside the UAXS.

2If you ordered the HiL as an upgrade to your existing Flaying Lab, you have to connect the CAN cable to the
Pixhawk on your own.

5

Figure 6: CAN Cable Connection to VN1630A. (VN1640A similar.)

4. Establish the connection between remote control and the Pixhawk. To do so, turn on the
remote control by pressing the Power button until the start screen appears. If a warning
appears, press the right button to continue. Now, select the pre-configured UAXS HiL
model as the operating model. This is done through pressing the left central button and
selecting the desired model with the right wheel. Figure 7 shows the selection menu as
well as the remote control. After the selection, the model name has to be marked. Now,
press the right button and choose Select model in the opening menu. Then press the
Exit button two times. Now, the model name (UAXS HiL) and the battery status should
be displayed on the screen. To check the connection on the Pixhawk side, verify that the
LED of the RC antenna lights up. This LED lays inside the head of the aircraft and is
shown also in Fig. 3. The remote control is now interacting with the Pixhawk.

6

Figure 7: Remote Control.

1.2.2 Control Law Implementation

The direct law is already implemented as flight controller. If you want to use it for the HiL, you
can skip to the next section.
If you want to implement your own flight controller, you have to flash the desired code for
testing on the Pixhawk.3 The following steps are required:

1. Start VMware Workstation Player and open the supplied ubuntu virtual machine (VM). It
is located inside the VM HIL folder. Unlock the ubuntu user with the following log in data:

USER: HIL_user
PW: HIL_flyinglab

2. Open the workspace in ubuntu and go to the determined folder for the flight controller.
The path is given as follows:
Talon/Firmware_Ctr/src/modules/flight_control

After opening the folder flight_control, replace the old source and header files with
the new desired ones (automatically generated by MATLAB). You may have to adjust the
names of the files to use for compilation in CMakeLists.txt.

3. Compile the code. To do so, open the terminal and type these commands:

cd ~/Talon/Firmware_Ctr
sudo make px4_fmu-v5_hil upload

After the compilation of the code the command stops and waits for the bootloader of the
Pixhawk. To continue the flash process, the micro USB connection from the Pixhawk has to
be unplugged and replugged again. The expected console output is shown in Fig. 8.4

3The code generation procedure itself is explained in detail in the manual of the UAXS.
4Note that the exact command in this figure differs from the description.

7

Figure 8: Compilation of Source Code.

If the bootloader still can’t be found, most probably the Pixhawk is connected to MS Windows
and not to the VM. In this case, you have to change the connection status in VMware. The
explicit procedure for this is described in Sec. 3.2. The whole PX4 source code with the
controller on top is now flashed on the Pixhawk. If it was successful, the console will print out
the text seen in Fig. 9.

Figure 9: Uploading the Source Code.

After successful completion, the VM can be minimized or closed.

1.2.3 QGroundControl

QGroundControl (QGC) is a virtual ground station for monitoring the flight mission of the air-
craft. It needs to be installed and opened in MS Windows.5 There are two different options to
connect the aircraft to QGC. The first option is via USB. To do so, change the connection set-
tings of the aircraft in the VM from VM to Host (detailed information are provided in Sec. 3.2).
The second option is to connect the telemetry transceiver via USB cable to the simulation
host. After opening QGC in MS Windows, the aircraft should be connected to QGC. If this is
not the case, restart QGC or unplug and replug the micro USB cable that connects the aircraft;
alternatively, unplug and replug the telemetry transceiver. The top right corner in QGC shows
the connection status (see Fig. 10).

5The installation procedure of QGC is explained in detail in the manual of the UAXS.

8

Figure 10: Connection Status in QGroundControl.

When the aircraft is connected, check if the pre-initialized sensors setting is set to the option
rotation_none
Also, check

a) if the RC remote control is connected to the aircraft and

b) that the RC channels are displayed in the MAVLink Inspector (see Fig. 11). This proce-
dure is typically only necessary if QGC was connected to another Pixhawk before, as
this might affect the settings. For more information on these settings, review Sec. 6.1.

Figure 11: MAVLink Inspector.

1.2.4 Interface

The simulation is performed using the CAN bus controlled by the VN1630A/VN1640A. It is
operated through the CANoe software or through Simulink directly.

CANoe Interface
After the software is installed, two steps are required to prepare the simulation:6

6The installation guide for CANoe is provided by Vector Informatik as part of the HiL.

9

1. Start CANoe in MS Windows.

2. The Graphical User Interface of CANoe will be shown. Upon first start, the CANoe
Configuration has to be opened using the File tab and then selecting the Open option
from the pop up menu. Select the desired configuration file from the CANoe folder (see
Fig. 12). Then, the desired interface setup is ready; the fully configured setup for a
running simulation is shown in Fig. 13.

Figure 12: Procedure for Setting Up CANoe Configuration.

Figure 13: Desired CANoe Configuration.

The next time, CANoe can be opened without any additional setup procedure, because the
configuration will be automatically selected.

Simulink CAN Interface
From 2023 on, the HiL is delivered with a 2021a Simulink model that directly uses the CAN
interface of MATLAB. Therefore, the installation of CANoe is not required anymore. CANoe
can still be used to analyze communication on the CAN bus.

10

Figure 14: MATLAB Status Message Indicating a Connected CAN Interface.

Before opening the Simulation Model, ensure that the VN 1630/1640 CAN interface is con-
nected to the computer and is detected by MATLAB (see Fig. 14). If it is not detected by
MATLAB, ensure that all drivers have been installed correctly.
If you have accidentally opened and saved the Simulink model before the CAN interface was
connected, you have to run the CAN_Adjust.p MATLAB script to reinitialize the CAN interface.

1.2.5 Simulation Model

The simulation of all the dynamics is done using a Simulink model. To start this model, the
following steps are required:

1. Open MATLAB 2017 and change the working directory to the Simulation Simulink
subfolder originally provided on the USB stick.

2. To initialize the simulation model, open and run the init_sim.m MATLAB script. Then
open the simmodel.slx Simulink model, and wait until the window with the model opens.
Simulink is now set up and prepared. Until now, do NOT press the Start button in
Simulink; before you can start the whole simulation, a final step is required.

1.2.6 Virtual Flight Test Environment

The AlphaLink Virtual Flight Test Environment (VFTE) is a web browser-based simulation en-
vironment. A proprietary version exists for the HiL. To start it, follow these steps:

1. Open the Windows Command Prompt and change the working directory to the subfolder
Simulator Webserver originally provided on the USB stick.

2. To start the VFTE, type

node index.js

After an initialization, the command prompt should print out the following confirmation of
successful UDP and server start: UDP and HTTP Server started.
Note: You should execute the commands with administration rights to avoid permission
conflicts.

3. Open the browser and start the local host through typing the following address:

localhost:8000

The VFTE should appear now awaiting the simulation to start. Go back to Simulink and press
the Start button to launch the whole simulation. The VFTE shows the start in the perspective
of the drone pilot: If you want to switch to a follow-me mode, press p. With the successful

11

start of the simulation, you can observe the movement of the aircraft in the VFTE and in QGC.
Furthermore, you can observe the data traffic from the interface in the CANoe window; in the
default settings, the incoming actuator commands are plotted and the trafficking messages are
registered in the trace.

12

2 CANoe Details

In this chapter, the details for the usage of CANoe will be explained. CANoe is a software
from Vector Informatik. Together with the VN1630A box, it provides the interface for the data
link layer of the CAN bus to communicate with the simulation host. The software also provides
some useful tools to manage and control the CAN bus. The following sections will guide you
through the basic configuration of CANoe afterwards.
Note: Here, it is assumed that you have already successfully installed CANoe and activated
your license. If not, the CANoe Installation Quick Start is recommended for setting up the
software.

2.1 Connection to Simulink

The simulation data are exchanged between CANoe and Simulink via the CANoe Simulink
Interface. This interface has to be installed using a file provided by Vector Informatik. Fur-
ther Requirements are MATLAB 2017b and the Mingw-w64 Compiler in the MATLAB compiler
settings.7 For the installation, the following procedure is recommended:

1. Navigate to the folder, where you installed CANoe (e.g. /Program Files/Vector CANoe
14.0) and open the install file Vector_AddOn_Matlab_Interface_V632 under
Installer Additional Components/Matlab.
Note: You should execute the command with administration rights to avoid permission
conflicts.

2. Follow the instructions from the installer. Choose MATLAB 2017b as the installation
environment because the installer does currently not recognize any newer version. After
successful installation, the program will close itself.

3. Restart your computer. Then open Simulink in MATLAB 2017b. If the installation was
successful, a new category in the Simulink library will appear called CANoe. In this case,
the CANoe input and output blocks of the provided simulation model will be recognized
by Simulink.

2.2 Configuration

First, open the configuration of CANoe. To do so, select File tab in the top left corner in CA-
Noe and choose the option Open. A file navigation will open. Select the HIL_UAS_CONFIG.cfg
file from the CANoe subfolder. The configuration file defines all parameters and settings con-
cerning the CAN bus, which acts as the simulation interface. The software is handled through
a Graphical User Interface (GUI).

2.2.1 GUI Setup

The default layout for the regular use is shown in Fig. 15. The Graphics window has to be
closed to reveal the basic GUI setup. The GUI of the default configuration consists of three
main windows (see Fig. 15).

7Installation of the compiler has to be done inside MATLAB.

13

Figure 15: CANoe GUI.

1. Measurement Setup: This setup gives you the opportunity to access tools to see the
statistics of the measurement or the involved data (see a detailed view in Fig. 16). It also
offers the possibility to plot them in a live view. These tools will be further examined in the
next subsection. Using the switch in the center, you can choose between taking the real
data from the bus into account or doing a completely virtual simulation with logged data
from a previous measurement. The latter one is useful to analyze and repeat certain
situations.

Figure 16: CANoe Measurement Setup Window.

14

2. Simulation Setup: You can adjust the parameters of the CAN bus and also the par-
ticipants on the bus in this setup (see a detailed view in Fig. 17). The participants are
represented as nodes, with the Simulation node being the simulation host and the
Pixhawk node being the aircraft. To change the bus setting, double click the box with
the Network/CAN/CAN 1 node in the setup. The Network Hardware Configuration
Window will open (see Fig. 18).

Figure 17: CANoe Simulation Setup Window.

Figure 18: CANoe Network Hardware Configuration Window.

15

This window includes the menu options for the bus speed and sampling point. For the
HiL, the baud rate must be set to 500 kBaud and the sampling point to 62 %. It also
contains the so-called self acknowledgment (TX Self-ACK) option.8 This means that a
message does not require having a receiver to acknowledge it. In turn, the messages do
not get stuck if the bus is waiting for a receiver. This option is useful if the CAN message
is aimed to be seen through a digital analyzer.

3. Trace: This window lists all the incoming and outgoing messages with their correspond-
ing timestamp (see Fig. 19). The depicted messages are defined through a database
that is added in the simulation setup. Vector is using a proprietary database system
called DBC.

Figure 19: CANoe Trace Window.

8Sampling point and self acknowledgment option can be accessed though selecting the Setup submenu in
the Network Hardware Configuration window (see Fig. 18).

16

2.2.2 DBC File

The configuration comes with a linked DBC file labeled HIL. This DBC defines all parameters
of the messages that are exchanged between the Pixhawk and the simulation host. You can
open it through double clicking its icon in the Simulation Setup window (see Fig. 17). The
CANdb++ Editor is required; it is included in the successful installation of CANoe. The opened
database can be seen in Fig. 20.

Figure 20: DBC HIL.

The starting point of the definition is the network that is called HIL. This Network has two so-
called electronic control units (ECU): the simulation host called Simulation and the Pixhawk.
Both are represented by one node in this network (see Fig. 20). Their corresponding mes-
sages are assigned to these nodes. This means the simulation host (the Simulation node)
transmits the sensor values while the Pixhawk node transmits the actuator commands.
A message is defined by one CAN frame with a payload of 64 bit. Because of that, one frame
can carry multiple values called signals, if it is in the range of these values (e.g. eight uint8_t).
Except for the actuator commands (that are floats), all values are given as a double. Hence,
only one frame can carry one signal. This is why signals and corresponding message names
only differ in the capitalization. In the signal part, the data type, bit order, and start bit of the
value will be defined. In the message definitions, the important settings such as the DLC and
the MSGID (message ID) are given. Further, you can set a transfer method and the repetition
rate of the signal. This is used for the simulation to transmit the data coming from Simulink.9

2.3 Tools

CANoe provides various tools for a rich analysis of the measured data. One of the very useful
ones is the Graphics tool. It can be accessed through the Measurement Setup. With this
tool, you can plot data in real time (see Fig. 21).

9To add a new message or alter the configuration, please see the CANoe instructions provided by Vector
Informatik.

17

Figure 21: CANoe Graphics Window.

To add a signal or delete it from the plot, click the right mouse button and chose from the
window. For adding the signal, a menu with the DBC appears, where you can select a signal
from a message. The selected signal is then added to the left sidebar; to deactivate it, uncheck
the box.

Another useful feature in the Graphics tool is Plot separately, marked in red in Fig. 21.
Through this setting, all signals get plotted separately. A further useful tool are the CAN
Statistics that are also accessed through the Measurement Setup. The statistic shows
all relevant parameters for monitoring the bus and also provide insights if transmission errors
happen (see Fig. 22 for a sample measurement).

Figure 22: CANoe CAN Statistics Window.

18

3 Virtual Machine Details

In contrast to the stand-alone Flying Lab, the coding and compiling environment for the HiL is
located in the supplied Virtual Machine (VM) using Ubuntu. This is due to the bigger repository
of tools in Linux that are needed to access the functionalities of the CAN bus communication.
The following sections will therefore cover all information regarding the VM that are required
for the handling of the HiL.

3.1 Installation

A VM is a simulation of a computer system inside a computer system. This means that for ex-
ample that you can run a Linux Distribution on the same computer parallel to the host operating
system, e.g. MS Windows. To run the supplied VM, the VM Workstation Player 15 of VMware
is required. You can download it for free for non-commercial use.10 After the download, install
the player following the instructions provided by VMware. Then restart the computer and open
the player (see Fig. 23).

Figure 23: Launch Window VMware Workstation 15 Player.

Click Open a Virtual Machine. Navigate to the VM HIL folder and select the HiL_px4_ubuntu
file (see Fig. 24).
Note: Remember that it is recommended to copy the relevant files from the USB stick to your
hard drive first.)

10https://my.vmware.com/de/web/vmware/downloads/info/slug/desktop_end_user_computing/
vmware_workstation_player/15_0.

19

https://my.vmware.com/de/web/vmware/downloads/info/slug/desktop_end_user_computing/vmware_workstation_player/15_0
https://my.vmware.com/de/web/vmware/downloads/info/slug/desktop_end_user_computing/vmware_workstation_player/15_0

Figure 24: File Navigator for VM.

The selected VM is then shown in the VMware Workstation Player. Press Play virtual
machine to start the VM.
The notification seen in Fig. 25 gives the information that the VM is in a suspended state. This
means, the ubuntu system will start right at the point of the last usage, i.e. the loading time is
minimized and it gives huge flexibility because all opened projects and files stay restored.

Figure 25: Launch Window VMware Workstation Player.

After restarting, the system requests the user to log in. The log-in information for this VM are
given as follows:

USER: HIL_user
PW: HIL_flyinglab

This password is also requested after executing a command with sudo (e.g. used in the next
section).

3.2 Working with the Virtual Machine

Inside the VM, you find the coding environment for the PX4 flight controller. To implement the
controller and compile and flash the source code, you can use the terminal and the file man-

20

ager. The starting point is the controller structure that was implemented using the AlphaLink
controller template. The MATLAB Embedded Coder generates the necessary C++ source and
header files. This code now has to be integrated in the PX4 source code by pasting it in the
corresponding flight_control folder with all the necessary source code for the controller
(see Fig. 26).11

Figure 26: Path to the Relevant Flight Controller Folder.

All the generated C++ and header files will replace their old counterparts. Check if all the
names match with the names of the files marked in red in Fig. 26.
To compile and upload the code, the terminal is needed. You can open it through clicking the
black icon with the white arrow in it. In the terminal, three basic commands are important for
the process:

• cd - change the directory,

• ls - list all the files and folders from the current directory, and

• sudo make - run a makefile as superuser.

To compile the code, navigate to the development directory. This is done through the following
command:

cd ~/Talon/Firmware_Ctr

Now, the command position is located in the correct directory. To compile and flash the code,
the following three commands are required:

sudo make px4_fmu-v5_hil clean
sudo make px4_fmu-v5_hil
sudo make px4_fmu-v5_hil upload

With the make [file name] clean command, the previous code is erased to avoid potential
errors. The second command compiles the code (compare Fig. 8 in the quick-start guide).
The last command finally flashes the code on the Pixhawk flight controller. If the bootloader
cannot find any device, then the Pixhawk may be connected to the host operating system (MS
Windows). To change that setting, click right on the small icon in the upper right corner of the
VMware player. Then choose Disconnect from host (see Fig. 27). The icon will now light
up in green and appear in a brighter shape (see Fig. 28), indicating that it is connected to the
VM.

11Complete path: Talon/Firmware_Ctr/src/modules/flight_control.

21

Figure 27: Disconnecting the Pixhawk from MS Windows Computer.

Figure 28: Connecting the Pixhawk to the Virtual Machine.

3.3 Additional Information

The provided VM includes further pre-installed software. Among those, Stacer is an addi-
tional, convenient monitoring tool to keep the VM clean. Over time, a bulk of temporary data
can bloat up all the virtual storage. This in turn can lead to a broken VM that then cannot be
accessed anymore. Stacer offers a solution through cleaning all temporary data. You access
it through clicking on the Brush icon in the application list (this list appears when you click the
menu in the bottom left corner).

Figure 29: Cleaning with Stacer.

Figure 29 shows the files that can be deleted. To clean the storage, click the Brush but-
ton located at the bottom. Note that cleaning the applications data (Applications Logs,
Applications Caches) may lead to performance decrease or undesired behavior of the ap-
plications. Hence, these files should only be cleaned with caution.

22

4 Simulink Model

This chapter provides an overview of the simulation setup and shows you how to manipulate
sensor data.

4.1 Overview

The flight simulation is done using a Simulink model called simmodel.slx.To initialize this
model with the desired parameters, the init_sim.m script is automatically executed as an
initialization function when the simulation is started. You can change the init_sim.m script
in MATLAB or specify a different initialization function in Simulink (Property Inspector >
Callbacks > InitFcn). Furthermore, the trim_routine.m script can be used to calculate
trim values for the control surfaces, thrust, and angle of attack for any flight condition. For this,
an airspeed and flight path angle have to be specified in the trim_routine.m script. A .mat
file with the new trim values will be created automatically. This file can be implemented in the
init_sim.m script and, hence, a new flight state is used within the nonlinear simulation. 12

The initialization script, the trim routine, and also the simulation model are all located in the
folder Simulation Simulink on the provided USB stick. The model can be basically sepa-
rated in six components (see Fig. 30).

CAN
Input

Wind
Control
Panel

Initialization
Parameters

Nonlinear Flight Dynamics
& Sensor Models

CAN
Output

VFTE
Interface

Figure 30: Overview Simulink Model.

12To do this, the new .mat file must first be copied to the Simulation_Simulink folder. Then the name of the
new .mat file can be specified in line 30 of the init_sim.m script and the code can be activated by removing the
comment function (deleting the % symbol).

23

1. CAN Input: The first component (left, top) is the system input. This component receives
the command signals from the aircraft and forwards them to the nonlinear simulation
model.

2. Wind Control Panel: The second component (left, center) allows to modify atmospheric
parameters. Stationary wind speed and direction as well as gusts and turbulence can
be set.

3. Initialization Parameters: The third component (left, bottom) passes the initialization
parameters for the simulation, which are loaded by default from the init_sim.m script,
to the nonlinear simulation model.

4. Nonlinear Flight Dynamics & Sensor Models: The center component computes the
overall flight dynamics and sensor models. This component relies on several modules.
It calculates the associated behavior of the control surfaces and the thrust. The exter-
nal forces and moments are calculated. Using these calculated forces and moments
as input, the equations of motion for the aircraft are solveed. Finally, the flight mechan-
ical parameters like the Euler angles, the airspeed, the altitude etc. are converted to
those values that the sensors of the aircraft would measure under the simulated flight
conditions. This is done through adding the identified sensor dynamics and the noise.

Table 1 lists the sensors inside of the aircraft that are simulated.

Table 1: Overview of Simulated Sensors inside the Aircraft.

Sensor Simulated Values

Accelerometer accel_x, accel_y, accel_z

Gyro gyro_x, gyro_y, gyro_z

Magnetometer mag_x, mag_y, mag_z

LiDAR lidar

Barometer baro_press, baro_temp

Differential Pressure Sensor diff_press, diff_temp

GPS gps_lat, gps_lon, gps_alt, gps_alt_ell, gps_vel_n,

gps_vel_e, gps_vel_d, gps_yaw

5. CAN Output: In this component (right, top), the simulated sensor data are transferred
through the Simulink CANoe interface to CANoe. Over the CAN bus, they are then finally
transferred to the aircraft.

6. VFTE Interface The last component (right, bottom) refers to the visualization and pro-
vides an interface to the VFTE. In this interface, all the required data for the visualization
in the VFTE will be sent trough a UDP connection. Therefore, the signals are mixed over
a Mux block and are converted to single bytes. Then, they are sent over UDP to a server,
which hosts the VFTE in the local web browser. For more Information, please review
Ch. 5.

24

4.2 Manipulation of Data

A significant advantage in HiL testing is the simulation of failure conditions in a safe environ-
ment. Failure conditions can be generated through sending deliberately wrong sensor values.
The provided simulation model offers you an opportunity for this sensor data manipulation
through adding a predefined subsystem to the output of the simulation model. Figure 31
shows how this subsystem is integrated.

Figure 31: Integration of the Subsystem.

You can find this subsystem in the Simulation Simulink subfolder as data_manip.slx
model; it is also included in the simulation model as a comment, so it is ignored. Inside
this subsystem, there are two different ways of manipulating the incoming data (see Fig. 32):

1 2

Time condition for starting the
manipulation

Figure 32: Subsystem of the Data Manipulation.

1. The first way is adding an additional bias to the signal. That way, the desired bias can
be defined inside the given constant block.

2. The second way is sending a wrong constant value instead of the calculated value. To
start this manipulation, two switches are integrated. In the first switch, a component
is added to the signal (1 and 2) while in the second switch the signal is replaced by a
constant value. Both have a switching condition that is linked to the simulation time. This
gives you the opportunity to start the manipulation at a desired point in time. To set that
time, you have to define a threshold inside this block.

Let us look at one example: as seen in Fig. 32, the threshold is defined as 10,000. This
means the switch would change from the unmanipulated lower input to the manipulated
upper input at a simulation time of 10,000 seconds. The same applies to the second
switch. If only the first type of manipulation is desired, i.e. where the error is added to
the signal, the threshold of the second switch should be set to inf. This would result in
only the first manipulation becoming active over time.

Instead of using a constant value, you can use arbitrary inputs like a step for manipula-
tion.

25

5 Node.js

This chapter provides an overview about the working principles of Node.js in combination with
the Virtual Flight Test Environment (VFTE). It also discusses the configuration procedure and
the start of the Node.js program in more detail.

5.1 Overview

The AlphaLink VFTE is used for the visualization of the simulated flight dynamics. It is a web-
based visual, where the six degress of freedom are displayed through computer graphics.
This requires a communication between the simulation model in Simulink and the VFTE to
exchange the required parameters for the correct representation of the aircraft. This is done
using Node.js. To install Node.js on MS Windows, the installer node-v14.16.1-x64.msi in
the directory Simulator Webserver can be used with its default settings. 13

The provided Node.js program creates a UDP server and a web server. The UDP server
receives the simulation data from the Simulink model and transfers it to the web server, where
the VFTE is hosted.

Figure 33: Scheme Node.js.

The web browser now accesses the hosted web server through the local host and processes
the visualization so that the movement of the aircraft can be followed. Figure 33 illustrates the
basic principle.

5.2 Configuration and Start

The UDP communication between Simulink and Node.js uses the port 7788 while the commu-
nication with the web server uses the port 8000. Node.js creates those ports using the local IP
address of the simulation host. Depending on the local network of the computer, this address
may vary. Hence, the given Simulink model broadcasts its UDP message to each possible IP
address with an open 7788 port.14 If the local address is known, the actual IP address indi-
cated in the block transmitted through UDP can replace the broadcast settings. This is done
inside the VFTE interface module in the Simulink model as shown in Fig. 34.
To start this interface, execute the provided Node.js application index.js in the command
prompt (see the steps from the quick start described in Sec. 1.2.6). To access the web server
from the browser, the local host with the port 8000 has to be selected. To do so, type

localhost:8000
13The latest version of Node.js can alternatively be downloaded from https://nodejs.org/en/download/

for various operating systems.
14If a connection is not possible, the MS Windows Defender may block the UDP port.

26

https://nodejs.org/en/download/

in the address bar and the VFTE will be displayed (see. Fig. 35).
The ports used can be changed in the index.js file in the Simulator Webserver directory.
The port of the UDP server is set in line 55 the; the port of the HTTP server is set in line 58.
Subsequently, use the new UDP port in the UDP Block of the Simulink model; use the HTTP
port when calling the VFTE in the web browser.

Figure 34: Settings of the Transmitted UDP Block.

Figure 35: AlphaLink Virtual Flight Test Environment - Follow-Me Mode with Scope and Map.

27

6 QGroundControl

QGroundControl (QGC) is the default monitoring and ground control application for the aircraft
within the PX4 flight controller environment. For the basic setup, install QGC with the given
installer in the folder QGroundControl from the USB stick.15

A telemetry transceiver is integrated in the aircraft, because it uses telemetry in real flight tests
and in the HiL simulation. The transceiver must be connected to the computer. In contrast
to real flight tests, the aircraft can also communicate using a USB cable in HiL simulations.
Hence, this cable also must be connected to the computer.
Note: If the VM is running, check that the flight controller is connected to the host. For more
detailed information, please see Ch. 3.

There are two important interfaces in QGC:

1. The overall GUI, where the received flight parameters can be monitored and the binary
log file of the mission can be downloaded; and

2. An inline of the shell of the operating system. The flight controller runs on that operating
system.

6.1 Graphical User Interface

In the Graphical User Interface (GUI), you can monitor the mission, configure the aircraft and
download the mission log from the flight controller.

6.1.1 Monitoring

There are two ways of monitoring the flight mission. Figure 36 shows the first way. You can
access it through clicking on the icon representing a paper plane.

Figure 36: Standard Mission Monitor.

15The detailed installation procedure is explained in detail in the manual of the UAXS.

28

In this window, the flight path is plotted on a map and the position is continuously updated. In
addition, a Primary Flight Display (PFD) is presented in the upper right corner. There, you can
observe the bank angle and the pitch angle. The box below allows to list more parameters that
will be displayed during the mission, e.g. the airspeed. A red arrow marks the position on the
map and indicates the heading.
The second way to monitor the mission is the MAVLink Inspector. You can access it through
clicking on the icon representing a sheet with lens and then choosing the Inspector (see
Fig. 37).

Figure 37: MAVLink Inspector.

There is a list of data transfers called topics (see Fig. 37). In these topics, all important sensor
data and estimated data can be inspected. The topics are named after the content; also the
update rate is given. For example, the topic labeled ’high resolution imu’ gives insights into the
acceleration and angular speed of the aircraft.

6.1.2 Configuration

The configuration and calibration is done in the setup menu. You reach the menu through
clicking the Settings icon (see. Fig. 38).

Figure 38: QGroundControl Configuration.

29

For the simulation, it is only important to check that there is no preconfigured rotation in the
sensors setup. To do so, select the sensors setup and check whether rotation_none is
selected for ’Compass’, ’Gyro’ and ’Accel’ in the Calibration (see Fig. 39).

Figure 39: Sensor Setup Menu.

6.1.3 Log File

To download the log file, go to the Log window. You can find it in the same category as the
Inspector (see Fig. 40).

Figure 40: Log Download Menu.

The recorded logs are listed with a timestamp. Select the newest log and press the Download
button. It may happen that the displayed time stamp of the log differs from the actual time. To
identify the correct log, you may observe which file size is growing over time – this will be the
desired file. The log file is provided as a .ulg binary file. To convert it to a .mat file, AlphaLink
provides a dedicated program (see the UAXS Manual for a detailed description).

6.2 Nutshell

The flight controller runs on a real-time operating system (RTOS) called NuttX with a shell for
interaction (Nutshell). This shell provides a console that you can access through the MAVLink
console. You can find it in the same side menu like the Log file or the Inspector (see Fig. 41).
For the actual monitoring, two commands are important. The first command is:

uorb top

This command lists all internal messages of the flight controller together with the update
rate. The flight controller communicates internally through a so-called Object Request Broker
(uORB). It can bee seen as an internal data bus that sends all the different data like sensor
driver and estimators. Each message can be identified on the bus through its own topic (see
Fig. 41).

30

Figure 41: MAVLink Console.

You can see the content of the message through the command listener using the second
command:

listener [topic name]

The argument for this command is the desired topic name. Replace [topic name] with the
correct name of the topic as listed in the MAVLink Console. To inspect the barometric data
such as static pressure or the temperature, for example, type:

listener vehicle_air_data

Figure 42: Inspect Sensor Message Content.

Figure 42 shows how this command would look in the console. For further information regard-
ing uORB, please see the documentation from PX4.16

16https://docs.px4.io/master/en/middleware/uorb.html.

31

https://docs.px4.io/master/en/middleware/uorb.html

6.3 Resetting the Parameter Configuration

If the estimation of the HiL Simulation is represented wrongly, e.g. so that the Talon seems to
fly backwards or the heading is inaccurate, the parameter settings in GQC may be changed.
This may lead, for example, to a rotation of the measured acceleration and hence, a wrong
estimation with a rotated state. You can change to the default parameters by following these
steps:

1. Connect the Pixhawk to the user’s computer and open QGC.

2. Go to the Vehicle Setup view, select the Parameters option, and click the Tools button
on the right side (see Fig. 38).

3. Choose "Load from file" and navigate to the USB Stick to choose the Param_HIL.params
file from the folder QGroundControl.

4. Finally, restart the Pixhawk by unplugging the power connection and reconnect.

32

A USB Stick Directory

HIL MAIN

CANoe

HIL_UAS_CONFIG.cfg

HIL.dbc
...

Controller Simulink

Controller_Template

Controller_AP

Documentation

AlphaLink_HIL_V1-1a.pdf

Matlab

Lin Models

Log Data

Trimpoints

QGroundControl

Params_HIL.param

QGroundControl-installer.exe

Simulation Simulink

Trimm

init_sim.m

simmodel_2017b.slx
...

Simulator_Webserver

index.js

node-v14.16.1-x64.msi
...

VM HIL

33

	Introduction
	Why Hardware-in-the-Loop Simulation?
	Quick-Start Guide
	Building up the Simulator
	Control Law Implementation
	QGroundControl
	Interface
	Simulation Model
	Virtual Flight Test Environment

	CANoe Details
	Connection to Simulink
	Configuration
	GUI Setup
	DBC File

	Tools

	Virtual Machine Details
	Installation
	Working with the Virtual Machine
	Additional Information

	Simulink Model
	Overview
	Manipulation of Data

	Node.js
	Overview
	Configuration and Start

	QGroundControl
	Graphical User Interface
	Monitoring
	Configuration
	Log File

	Nutshell
	Resetting the Parameter Configuration

	USB Stick Directory

