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Terms and Conditions

The AlphaLink Unmanned Aircraft Experimental System (UAXS) is a set that consists of soft-
ware and hardware for experimental purposes. The software is provided on a USB stick. The
MATLAB/Simulink model may not be copied or redistributed in whole or part. One copy per
set is allowed for internal use only. Publications that refer to the supplied MATLAB/Simulink
model must always be made with reference to this manual.
Note: The current version of the UAXS is designed for computers with MS Windows as oper-
ational system and is tested with MATLAB R2019b.

The PX4 software and Pyulog are licensed under BSD-3. PX4: Copyright (C) 2012 - 2020, PX4 Development
Team; all rights reserved. Pyulog: Copyright (C) 2016, PX4 Pro Drone Autopilot; all rights reserved. Redistribu-
tion and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met: i) Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer. ii) Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or other materials provided with the
distribution. iii) Neither the name of GpsDrivers nor the names of its contributors may be used to endorse or pro-
mote products derived from this software without specific prior written permission. DISCLAIMER: This software
is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In
no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary,
or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of
use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract,
strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if
advised of the possibility of such damage.
Python is distributed under the Python Software Foundation’s Agreement; Copyright (C) 2001-2020, Python Soft-
ware Foundation; all rights reserved.
QGroundControl (QGC) is dual-licensed as Apache 2.0 and GPLv3.

Delivery Scope

Included in the delivery of an AlphaLink UAXS set are:

1. Airborne System (ZOHD Nano Talon EVO PNP, incl. battery),

2. Flight Control Computer (Pixhawk 4 Mini),

3. GPS Module (UBLOX NEO M8N GPS),

4. Airspeed Sensor (Holybro Digital 4525DO Sensor),

5. Telemetry Set (Pixhawk 4 433 Mhz 100 mW), and

6. USB Stick with PX4 Software, QGroundControl, Python, Matulog, Pyulog, MATLAB/Simulink
Model, Linear State-Space Models, Manual, and Readme file.

The following components are currently available as add-ons to the AlphaLink UAXS set:

1. Remote Control (FrSky Taranis Q X7 RC Transmitter 2.4 GHz with 16 channel, incl.
battery) and RC Receiver (FrSky R-XSR EU LBT),

2. LiDAR Sensor (Benewake TFmini Plus Micro LiDAR) and

3. Hardware-in-the-Loop Simulator (AlphaLink hardware and software).
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1 Setup and Commissioning of the Airborne System

The PX4 software is already implemented on the Pixhawk 4 Mini flight control computer (Pix-
hawk). For sets with the remote control add-on, the system is ready to use.1

1.1 5-Step Setup

1. To install the wing, take off the upper caps of the plane. Then, stick the wing spar through
its mount in the fuselage (Fig. 1).

Figure 1: Installed Wing Spar.

2. Carefully push the wing halves onto the wing spar, until they lock into the hull. Be careful
that the control mechanism for the aileron connects smoothly by tilting the ailerons for
correct alignment (Fig. 2).

3. To install the V-tail, push in the tail halves with the magnets facing inwards and watch
out again for correct alignment of the control mechanism (Fig. 3).

4. Stick the propeller onto the engine shaft with the markings facing forward. Then, tighten
the nut with an 8 mm wrench (Fig. 4).

Note: Only install the propeller shortly before the flying and take it off afterwards.
Do not leave it on, when programming the Pixhawk. Do not touch the propeller,
when the battery is connected!

5. Place the battery inside the front of the plane and secure it using the strap. Underneath
the wing, there are two CG marks. Place a finger on each mark and balance the plane.
The nose should slightly face downwards. If that is not the case, move the battery
forward and check again. If the battery is already at the very front and the plane is still
not balancing right, add some trim weight (not included).

1Otherwise, Sec. 1.2 describes the installation for a remote control and RC receiver.
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Figure 2: Installed Wing.

Figure 3: Installed V-Tail.

Figure 4: Installed Propeller.
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1.2 Remote Control and RC Receiver

This procedure is only relevant for sets without the remote control add-on. Be aware, that
only serial protocols like S.BUS, DSM or PPM are supported, but no PWM receivers. Further
information about supported receivers can be found on the PX4 website.2

Installation of the remote control and the RC receiver requires 3 steps:

1. Connect the RC receiver to the Pixhawk. Figure 7 shows the hardware dependencies.
From the delivered cables, choose one with a connector that fits into the RC IN port of
the Pixhawk. Connect the other side of each cable to the receiver, according to the RC
IN port table and the pin layout described in the manual of the receiver.

2. Set up the channels as described in the manual of the remote control. To use the setup
with the pre-installed Direct Law model, choose the following channel layout:

Channel 1: Thrust

Channel 2: Elevator

Channel 3: Aileron

Channel 4: Rudder

Channel 5: Switch 1

Channel 6: Switch 2

Channel 7: Switch 3

Channel 8: Switch 4

Be aware that the controls must be correct according to the flight mechanic algebraic
sign. For this, typically the elevator channel has to be inverted. It may be necessary to
adjust the channel range in the provided MATLAB/Simulink model (see Sec. 4.2).
Figure 5 shows the configuration of the FrSky Taranis Q X7 remote control as an exam-
ple.

3. Bind the receiver and the remote control according to their manuals. Supported receivers
will be detected automatically by the Pixhawk.

2https://docs.px4.io/v1.9.0/en/getting_started/rc_transmitter_receiver.html#compatible_
receivers.
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Figure 5: Channel Layout of Exemplary Remote Control (Model: Taranis FrSky Q X7).

1.3 Flight Test Preparation and Take-Off

For a successful test flight, it is recommended to mind the following 7-point checklist before
take-off:

� Set thrust on remote control to zero.

� Turn on remote control.

� Connect battery.

� Calibrate airspeed sensor (see Sec. 3.3).

� Restart Pixhawk. To do so, switch to the MAVLink NuttX console NuttShell (see Fig. 9)
and enter reboot.

� Check that GPS signal is valid. This is done by enterin the ekf2 status command into
the MAVLink NuttX console. Local Position needs to be valid.

� Test the correct operation of the control surfaces and the engine, while holding the plane
safely.

For takeoff, an assistant should hold the plane with one hand from underneath. Then the pilot
needs to give full throttle and the assistant throws the plane horizontally into a headwind (into
the wind). When releasing the plane from the hand, the assistant should immediately move
down the hand to avoid getting close to the spinning propeller.

After flying, disconnect the battery from the plane first, before turning off the remote control.
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1.4 Safety Instructions

Note: For the experimental purpose of the UAXS, the flight control system of the Talon Nano
Evo model has been modified. Therefore it should only be controlled by experienced pilots; it
may also require higher-than-average operational speeds to compensate for the increased
mass of the whole airborne system.

For safe aircraft operation, the instructions beneath shall be followed.

Battery: To charge the battery, use a LiPo suitable battery charger and set it to 3S (11.1 V).
Generally use a charging current of 1.5 A. If the battery needs to be charged faster, you can
set the charger to 3.1 A, but doing this regularly can reduce the battery life time.
Most chargers have a storage mode, where the battery is charged or discharged to about 40
to 50 percent of its capacity. This should be used, when not using the battery for a longer
period.

Operation: Do not fly over people, close to power lines or buildings. Only fly, where it is
allowed.
Be extra careful, whenever the propeller is installed and the battery is connected.
When the propeller is installed, always make sure that the remote control is turned on, before
you connect the battery.
Only install the propeller shortly before the flying and take it off afterwards. Do not leave it on,
when programming the Pixhawk. Do not touch the propeller, when the battery is connected.

Weather Conditions: Do not fly when it snows or rains. It is recommended not to fly, if
wind gusts of more than 10 knots are forecasted. In cold conditions, the possible flight time
decreases. Keep the battery warm before flying.
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2 Aircraft and System Description

The UAXS set consists of the flight test vehicle, its linear flight dynamics models at four trim
points, the flight control system, and associated software.

2.1 Aircraft Description

The Talon Nano Evo is a fixed-wing aircraft with V-tail. Table 1 lists the most important air-
craft parameters. Three aerodynamic rudders and thrust are available as input variables (see
Fig. 6). Left and right aileron are actuated by a common servo motor. Left and right V-tail
rudder have different servo motors and, hence, can be deflected independently. A control allo-
cation is made for consideration of conventional control surfaces andnis already implemented
in the Direct Law model. It can be changed as required. Using one elevator input (η) and one
rudder input (ζ), the following applies to the left (ηL) and right rudder (ηR) at the V-tail:

ηR = η − ζ

ηL = η + ζ
.

Table 1: Properties of Talon Nano Evo.

Property Dimension Property Dimension

Wingspan 0.86 m Wing Area 0.148 m2

Aspect Ratio 5.1 Length 0.57 m
Take-Off Mass 0.65 kg Battery Capacity 1550 mAh
Servo Motors 3 × 9 g metal gear Motor SunnySky 2204-1870KV

Propeller 6×3 (inch) ESC 30 A, 5 V 2 A BEC

Figure 6: Illustration of Talon Nano Evo with Rudders and Engine in a Coordinate System.
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The aerodynamic rudders are limited within ±25◦. The rotational speed of the engine is used
as thrust command. The value is limited between 0 and 1. A value of 1 means maximum
rotational speed while a value of 0 means full stop of the engine.

2.2 Linearised Flight Dynamics Models

A flight mechanical model for the aircraft was linearised at four trim points. The trim values are
stored within MATLAB-Files. Table 2 provides the trim values as well as the corresponding
file names. The trim data are available on the USB stick in the folder /Matlab/Trimpoints.

Table 2: Available Trim Points.

Nr. Filename Airspeed Flight Path Angle of Thrust Elevator

Angle Attack Lever Deflection

1 Trimm_V17_g0.mat 17 m s−1 0◦ 1.68◦ 0.91 −7.87◦

2 Trimm_V12_g0.mat 12 m s−1 0◦ 5.83◦ 0.66 −17.01◦

3 Trimm_V12_g10.mat 12 m s−1 10◦ 5.56◦ 0.77 −16.45◦

4 Trimm_V12_g-10.mat 12 m s−1 −10◦ 5.86◦ 0.52 −17.11◦

The folder /Matlab/Lin_Models contains the linearised models for all trim points. For every
trim point, three models are available:

1. one with consideration of longitudinal states only (MATLAB-Variable G_long),

2. one with consideration of lateral states only (MATLAB-Variable G_lat) and

3. one with consideration of both lateral and longitudinal states (MATLAB-Variable G_full).

In longitudinal motion, pitch rate (δq, unit: 1 rad s−1), angle of attack (δα, unit: 1 rad), indicated
airspeed (δVIAS, unit: 1 m s−1), and pitch angle (δΘ, unit: 1 rad) are used as state variables.
In addition to these state variables, flight path angle (δγ, unit: 1 rad) and ground speed (δVK,
unit: 1 m s−1) are available as output variables in longitudinal motion. Further, the elevator
deflection (δη, unit: 1 rad), thrust lever (δηTL, unit: 1), vertical wind speed (δwwg, unit: 1 m s−1),
and horizontal wind speed (δuwg, unit: 1 m s−1) in the geodetic system as well as wind-induced
pitch rate (δqwf, unit: 1 rad s−1) in the body-fixed system are available as input and disturbance
variables in longitudinal motion.

In lateral motion, yaw rate (δr, unit: 1 rad s−1), sideslip angle (δβ, unit: 1 rad), roll rate (δp, unit:
1 rad s−1) and bank angle (δΦ, unit: 1 rad) are used as state variables. In addition to these
state variables, vertical acceleration (δay, unit: 1 m s−2) is available as an output variable in
lateral motion. Further, aileron deflection (δξ, unit 1 rad), rudder deflection (δζ, unit 1 rad) and
east/west wind speed (δvwg, unit: 1 m s−1) in the geodetic system as well as wind-induced roll
rate (δpwf, unit: 1 rad s−1) and wind-induced-yaw rate (δrwf, unit: 1 rad s−1) in the body-fixed
system are available as input and disturbance variables in lateral motion.

In the full model, all state, input, disturbance and output variables of both the longitudinal and
lateral motion are available.
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2.3 Flight Control System

The flight control system consists of the flight control computer, sensors and actuators. The
flight control computer is the Pixhawk 4 Mini (Pixhawk). The flight control system is already
configured and installed in the aircraft. The Pixhawk is already connected to the GPS module,
the telemetry modem, the dynamic pressure sensor (I2C B) and the power distribution board.
For sets with the LiDAR sensor add-on, the sensor is connected to the UART interface. If
this device is not used, any other device that has a UART interface can be connected to
the UART interface of the Pixhawk. Additionally, a CAN bus interface is available. For sets
with the hardware-in-the-loop simulator add-on, this CAN bus can be used to interact with the
provided hardware (additional, external box). Alternatively, the UAVCAN can be used with the
CAN interface. Furthermore, an RC receiver (S.BUS, DSM or PPM) can be connected (see
Sec. 1.2). For sets with remote control add-on, an S.BUS RC receiver is already connected
to this interface. Figure 7 shows the interfaces on the Pixhawk and the pin assignment for the
previously mentioned connectors.

The PWM signals for the motor controller and servomotors as well as other interfaces are
located on the opposite side of the Pixhawk. In total, 8 PWM servo outputs are available (main
out). In addition to the main out pins, there is a PPM RC input port for PPM RC receivers,
an analog input (ADC) and four dedicated PWM/capture (CAP) inputs. However, there are no
drivers for the PWM/CAP inputs in the PX4 software. Figure 8 shows the interfaces on the
Pixhawk and the pin assignment for PWM out, PPM, ADC, and CAP.

One side of the Pixhawk contains a USB port and an FMU debug port. The USB port is already
connected with an extension cable, which ends in the front of the aircraft. With this USB cable,
the software can be uploaded to the flight control computer. Furthermore, a power supply is
provided by this cable. For simple system tests no battery needs to be connected to the power
board.

The other side of the Pixhawk contains the slot for the SD card. An SD card with a storage
capacity of 8 GB is already included in the set. However, other SD cards can also be used.3

Three servo motors and the motor are used as actuators. The actuators are already connected
to the Pixhawk.

In addition to the standard on-board sensors of the PixHawk, a dynamic pressure sensor and
GPS are included in the set. The dynamic pressure sensor is of model MS4525DO. A pitot
tube is already built in the airframe and connected to the sensor. The sensor is connected to
the Pixhawk via I2C. The maximum measuring range is 6894.76 Pa. The resolution is 0.74 Pa.
The accuracy is in the range of ± 17.23 Pa (at 25 ◦C). The dynamic pressure sensor is pre-
calibrated by the original manufacturer. It is recommended to perform a new calibration. The
GPS module is of type UBLOX M8N. It is connected to the Pixhawk via the UART interface.
The geographical position is obtained when the blue LED turns on and off.4

3For an SD card other than the provided one, it is recommended to copy the folder /etc/ from the provided
SD card to the new one.

4For initial connections of the battery to the airborne system, a median time of ≈30 s was observed until GPS
connection was successfully established (cold start). Due to the built-in battery of the GPS module, this time may
be significantly reduced for system restarts.
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RC IN port

Pin Signal Volt

1(red) VDD_5V_SBUS_RC +5V

2(black) SBUS* +3.3V

3(black) RSSI** +3.3V

4(black) VDD_3V3_SPEKTRUM +3.3V

5(black) GND GND

*Connect SBUS or DSM/Spektrum receivers signal

wire connect here.

**Sends the RC signal strength info to autopilot.

CAN port

Pin Signal Volt

1(red) VCC +5V

2(black) CANH +3.3V

3(black) CANL +3.3V

4(black) GND GND

RC IN CAN GPS MODULE

TELEM1 UART&I2C B POWER

GPS MODULEports

Pin Signal Volt

1(red) VCC +5V

2 black) TX (out) +3.3V

3(black) RX (in) +3.3V

4(black) SCL1 +3.3V

5(black) SDA1 +3.3V

6(black) SAFETY_SWITCH +3.3V

7(black) SAFETY_SWITCH_LED +3.3V

8(black) VDD_3V3 +3.3V

9(black) BUZZER +3.3V

10(black) GND GND

TELEM port *

Pin Signal Volt

1(red) VCC +5V

2(black) TX (out) +3.3V

3(black) RX (in) +3.3V

4(black) CTS (in) +3.3V

5(black) RTS (out) +3.3V

6(black) GND GND

UART & I2C B * ports

Pin Signal Volt

1(red) VCC +5V

2(black) TX (out) +3.3V

3(black) RX (in) +3.3V

4(black) SCL2 +3.3V

5(black) SDA2 +3.3V

6(black) GND GND

*A spare port for connecting sensors supporting

serial communication or I2C e.g. a second GPS

module can be connected here.

POWER

Pin Signal Volt

1(red) VCC +5V

2 black) VCC +5V

3(black) CURRENT +3.3V

4(black) VOLTAGE +3.3V

5(black) GND GND

6(black) GND GND

Figure 7: Pin Layout of Pixhawk 4 Mini for RC In, CAN, GPS, Telemetry, UART, I2C, and Power.
Source: Holybro.
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MAIN OUT

Pin Signal Volt + -

1 FMU_CH1 +3.3V VDD_SERVO GND

2 FMU_CH2 +3.3V VDD_SERVO GND

3 FMU_CH3 +3.3V VDD_SERVO GND

4 FMU_CH4 +3.3V VDD_SERVO GND

5 FMU_CH5 +3.3V VDD_SERVO GND

6 FMU_CH6 +3.3V VDD_SERVO GND

7 FMU_CH7 +3.3V VDD_SERVO GND

8 FMU_CH8 +3.3V VDD_SERVO GND

CAP

PPM

ADC

* WARNING: Sensors connected to this

pin should not send a signal exceeding

this voltage!

Pin Signal Volt

1 FMU_CAP1 +3.3V +5V GND

2 FMU_CAP2 +3.3V +5V GND

3 FMU_CAP3 +3.3V +5V GND

4 TIM5_SPARE_4 +3.3V +5V GND

Pin Signal Volt

S PPM +3.3V

+ VCC +5V

- GND GND

Pin Signal Volt

3.3V ADC1_SPARE_1 +3.3V*

6.6V ADC1_SPARE_2 +6.6V*

GND GND GND

ADC

S
+
-

MAIN OUT

CH8-7-6-5-4-3-2-1

CAP

CAP4-3-2-1

PPM
PPM

VCC

GND

3.3V

6.6V

GND

Figure 8: Pin Layout of Pixhawk 4 Mini for Main (PWM) Out, PPM, ADC, and CAP.
Source: Holybro.
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A telemetry modem is used for communication with the ground station (QGroundControl soft-
ware). It is already installed in the aircraft and connected to the flight control computer. It also
uses a UART interface. The PX4 software uses the MAVLink protocol for data transmission.
The transmission frequency is 433 MHz and the maximum transmission power is 100 mW. Ac-
cording to the original manufacturer, distances of up to 300 m are possible. A second telemetry
modem (included in the set) must be connected to the user’s computer via USB (FT230X Basic
UART to USB).

For sets with the remote control add-on, a FrSky Q X7 RC transmitter 2.4 GHz with 16 channel
and a FrSky R-XSR EU LBT receiver are included in the set. The remote control is already
configured. The receiver is already connected to the Pixhawk via the S.BUS interface.

For sets with the LiDAR sensor add-on, the Benewake TFmini Plus Micro LiDAR is included. It
allows the measurement of height above ground. The maximum measurable height is 12 m, the
lowest measurable height is 30 cm. It is connected to the flight control computer via the UART
interface. The instrument is already installed in the aircraft and connected to the Pixhawk.

Further information on the flight control computer can be found on the PX4 website.5 Informa-
tion about the on-board sensors of the Pixhawk and other technical details are also provided
there.

5https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4_mini.html.
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3 Configuration of Pixhawk 4 Mini Flight Control Computer

3.1 Configuration and First Steps

The following steps are necessary to setup up a Windows computer for compiling and upload-
ing the PX4 software. Other operational systems are currently not supported.

1. Open the file toolchain_installer.msi provided on the USB Stick and follow the in-
structions. (Do NOT check the "Clone PX4 Repository and Start Simulation" checkbox).
Default installation folder is C:\PX4; if you change this avoid blanks in the directory name.

2. Switch to the directory, where the toolchain was installed. Open the file run-console.bat.
(This Cygwin console is a Linux environment with tools for compiling the flight stack). It
runs an initial setup. Close it afterwards.

3. Copy the folder Firmware from the USB Stick into the home folder of the current directory.

4. Open the file QGroundControl-installer.exe provided on the USB Stick and follow
the instructions.

3.2 Using QGroundControl

QGroundControl (QGC) is a tool to access the running Pixhawk. It must be connected to the
user’s computer via USB cable or a telemetry modem. Be aware that if multiple telemetry
modems are active, it is undefined which one connects to the ground station. The QGC
interface is shown in Fig. 9 with indications of relevant icons and how to access NuttShell.

Figure 9: QGroundControl Interface.
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The QGC interface gives a full overview of the vehicle’s state. During flight tests, it is partic-
ularly important to observe the battery status displayed in the top line. Further, the icons for
GPS status and RC signal strength give helpful information. Error messages may occur due
to incompatibilities of different program versions and manipulations of the flight stack. All of
these can be ignored, as they will not affect the functionality of the system.6

NuttShell (NuttX console) is another important tool. It is used to access the underlying oper-
ating system. During flight tests, flight logging will be initialised with the boot sequence, but it
can be stopped and restarted from the NuttShell (see Sec. 3.6).

Figure 10: QGroundControl during a Flight.

Figure 10 shows QGC during a flight. On the right, vehicle attitude, course, relative altitude
and ground speed are shown.

3.3 Sensor Calibration

For calibrating the sensors, remove the propeller, power the plane and connect QGC to it.
Access the NuttShell (see Fig. 9) and enter commander start. After doing this, the motor
may start spinning spontaneously. Change to the Sensors option in the Vehicle Setup view
(see Fig. 11) and go through all calibration steps by following the instructions.

3.4 PX4 Software

A brief overview of the Pixhawk architecture with the PX4 Software is shown in Fig. 12.
The core is an STM32 microcontroller running NuttX, which is a minimised real-time operat-
ing system. Input and output drivers enable the communication with all used sensors and
actuators. An extended Kalman filter is included to estimate the attitude of the plane. This is
the general environment, in which the MATLAB/Simulink model operates. Further information
about the original flight stack can be found on the PX4 website.7

6Waiting For Vehicle Connection is displayed in red letters on the top right only if the Pixhawk is not connected
at all.

7https://dev.px4.io/v1.9.0/en/concept/architecture.html#flight-stack.
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Figure 11: QGroundControl Calibration Interface.

STM32 Microcontroller

NuttX

Input Driver Output Driver

Pixhawk

Sensors Actuators

Position
Estimator

Simulink
Model

Figure 12: Pixhawk Architecture and PX4 Software.
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3.5 Compilation and Software Upload

To implement new generated code as described in Sec. 4.3, go to the directory, where the
toolchain was installed and follow these steps:

1. Run the Cygwin console (run-console.bat).

2. Change to Firmware directory by entering cd Firmware in the command line interface.

3. Connect the Pixhawk to the user’s computer via USB cable.

4. Copy the generated code (controller.h, controller.cpp, controller_data.cpp,
controller_private.h, controller_types.h, rtwtypes.h) from your code genera-
tion folder into the flight control module directory of the Pixhawk flight stack, where you
installed the PX4 software (/home/Firmware/src/modules/flight_control).

5. Compile and upload the flight stack by entering make px4_fmu-v5_fixedwing upload.
In case connection problems occur, replug the USB cable.

To upload new source code in the same session, repeat steps 4 and 5. Figure 13 shows the
flow chart from MATLAB/Simulink model to executable software on the Pixhawk.

Figure 13: Flow Chart from MATLAB/Simulink Model to Executable Software on Pixhawk.

3.6 Access to Flight Test Data

The Pixhawk is capable of logging all data that are transferred between the different PX4
modules. These data transfers are organized in so-called topics. Logging starts with the boot
sequence and ends with shutdown. It can be stopped and restarted using the NuttShell via
QGC:

logger stop // stop logging
logger start -f // start logging
logger status // get status of logger
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Due to flight stack manipulations, it is not possible to use the on and off commands, described
in the modules’ documentation.
The Pixhawk Logger will write the log data into a file named logs/<date>/<boot time>.ulg
on the SD Card. If the Pixhawk does not have information about the current time, the filename
changes to logs/sessXXX/log001.ulg. The file format is ulog, which is a binary format.
There are two ways to access the log data: i) by removing the SD card from the Pixhawk
and plugging it into an SD Card reader or ii) via QGC. For using the second method, navigate
through QGC (see Fig. 14):

1. Go to the Analyze view,

2. Select the Log Download option,

3. Refresh the list with the button on the right side, and

4. Download the relevant log files.

Figure 14: QGroundControl Access to Log Data (Order of Steps Highlighted).

The following two tools for evaluating and visualising the log data should be considered:

PX4 Flight Review:8 The strength of this tool is its capability to visualise data. It is possible
to get a full 3D playback of the mission. A disadvantage is that .mat or .csv files cannot be
exported for further analysis. Also custom logs that are not part of the original PX4 software
cannot be processed with PX4 Flight Review.
To upload a log file, click Choose File..., browse to the log file and then click Upload. Dia-
grams that visualise the flight log data will appear. To get the 3D flight playback, click Open 3D
View.

Pyulog and Matulog in combination with MATLAB: Pyulog is a Python-based tool that,
in combination with Matulog, converts .ulg files to .mat files. Python needs to be installed
so that the Pyulog script is working properly. The software can be found on the provided
USB stick. Afterwards, the Matulog script can be started in MATLAB to choose a file for file
conversion. The Matulog MATLAB scripts can also be found on the provided USB stick. The
toolchain is described in Fig.15.

8https://logs.px4.io/.
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MATLAB R2019b

Pyulog Python Scripts

Python 3.7

Matulog MATLAB Scripts

Pixhawk Logger

.mat file

.ulg file

Figure 15: Toolchain for Log File Conversion.

A step-by-step installation guide for this tool in a MS Windows 10 environment follows:

1. Open python-3.7.7-amd64.exe (Python installation file) provided on the USB stick.

2. Check the Add Python 3.7 to PATH checkbox (see Fig.16).

3. Click Install Now. (If the Customize installation option is chosen, pip has to be
checked for installation.)

4. Open Windows Powershell or Windows Command Prompt and switch to the USB drive,
folder /Pyulog/.

5. Install Pyulog from the USB stick by entering the following command:

python setup.py build install

(If an error occurs, the python path was not added in the install menu, see Point 3. In
this case, reinstall.)

6. Start MATLAB R2019b.

7. Open the Matulog script provided on the USB stick (folder: /Matulog/.

8. Click Run and choose the corresponding .ulg file from the Pixhawk SD card.
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Figure 16: Python Installation Procedure.

The resulting .mat file contains a struct with 28 entries of logged raw data with different times-
tamps. An overview of the most important logged data is given in Tab. 3.

Table 3: Logged Data Overview.

Logged Data Title of Category Sample Rate

PWM signals for actuator control actuator_outputs_0 10 s−1

Simulink output signals for actuator control actuator_outputs_0_0 100 s−1

Airspeed sensor (indicated airspeed, true air-
speed, air temperature)

airspeed_0 100 s−1

Battery status (voltage, current, discharged ca-
pacity)

battery_status_0 2 s−1

LiDAR distance distance_sensor_0 100 s−1

PWM signals of remote control and connection
loss flag

input_rc_0 100 s−1

Gyro and accelerometer sensor sensor_combined_0 100 s−1

Log data from Simulink model (to be defined
manually)

Talon_log 100 s−1

Barometer sensor (pressure, air temperature) vehicle_air_data 10 s−1

Rotation rates and quaternions (calculated by
Extended Kalman Filter, EKF)

vehicle_attitude_0 100 s−1

GPS position (measured data) vehicle_gps_position_0 10 s−1

Wind estimation (calculated by KF) wind_estimate_1 10 s−1
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Most of the named signals are given or processed in the MATLAB/Simulink model and will be
more discussed later in detail (see Tab. 4). It should further be mentioned that the created
.mat file contains all raw data with the following limitations:

• Coordinate axes do not coincide for all data sets.

• Start time and end time of recordings vary with every data set.

• Not all data are stored in the correct unit.

To facilitate working with the log files, a MATLAB script extract_logfile.m is provided on
the USB stick in the folder /Matlab/LogData/ExtractData. This script converts the raw log
data to address the aforementioned limitations. Hence, it yields coinciding coordinate axes,
provides coherent logging time spans and stores all data sets in the correct unit. The extraction
function extract_logfile only needs the log file name as transfer parameter and returns a
struct with easily accessible log data. Data sets of timestamps in seconds for each topic can
be found in the converted struct. Furthermore, 20 log data can be individually defined in the
MATLAB/Simulink model. Those can be found under the name fc_log.9

3.7 Reset

To set the flight control computer back to its default settings, follow these two steps:

1. Resetting the Flight Stack: Delete the folder Firmware in the home folder of the direc-
tory, where the toolchain was installed. Copy the original folder Firmware from the USB
stick into that home folder (compare Step 3 in Sec. 3.1).

2. Resetting the Parameter Configuration: Connect the Pixhawk to the user’s computer
and open QGroundControl. Go to the Vehicle Setup view, select the Parameters
option, and click the Tools button on the right side (see Fig. 17). Then choose "Load
from file". Navigate to the USB Stick and choose the file parameters_UAXS.params.
Finally, restart the Pixhawk by unplugging the power connection and reconnecting.

Figure 17: QGroundControl Interface to Load Parameters from File.
9The MATLAB script renames the original file from its initial name Talon_log for reasons of compatibility.
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4 Simulink Development Model

The MATLAB/Simulink model provided on the USB stick is tested and designed for MATLAB
R2019b. To edit this model, MATLAB together with the Simulink toolbox, the Embedded Coder
and Simulink Coder are required.

4.1 Model Inputs and Outputs

The MATLAB/Simulink template controller.slx for the editable flight control logic is provided
on the USB stick in the folder /Simulink/Template. It is illustrated in Fig. 18. The inports and
outports define the interface between the flight controls and the software of the set. Hence,
inputs and outputs shall not be changed when modelling the flight control logic.
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Figure 18: MATLAB/Simulink Template for the AlphaLink UAXS.

20



The left side shows the inports of the flight controller. Those include:

• Accelerometer, gyro and magnetic field data from internal Pixhawk inertial measurement
unit (IMU),

• LiDAR distance from external LiDAR measurement equipment,

• Barometric measurements by internal Pixhawk sensor,

• Differential pressure data from external Pitot sensor,

• GPS data provided through PX4 Software from external GPS antenna,

• Estimated attitude (quaternions and Euler angles) and estimated wind speed computed
by an extended Kalman filter (EKF) from PX4 software; EKF estimates are based on the
internal Pixhawk IMU and GPS data,

• Inputs from the remote control, and

• Battery data.

The right side shows the outports of the flight controller. Those include:

• Commands for the 4 installed actuators and

• Configurable log data.

The MATLAB/Simulink inputs are pre-configured and shall be used as described in the Inter-
face Control Table illustrated in Tab. 4. Contrary to the raw log file data, the inports of the
MATLAB/Simulink model are already supplied with data in the correct coordinate axes and
units. Changing the inputs or outputs may lead to source files that cannot be compiled and
must therefore be strictly avoided!

Table 4: Interfaces of the MATLAB/Simulink Model.

Port Name Data
Type

Min.
Value

Max.
Value

Unit Sample
Time

Description

r4_acc_x single -3.4028
*10ˆ38

3.4028
*10ˆ38

m s−2 10 ms Acceleration measure-
ment in x-axis direction

r4_acc_y single -3.4028
*10ˆ38

3.4028
*10ˆ38

m s−2 10 ms Acceleration measure-
ment in y-axis direction

r4_acc_z single -3.4028
*10ˆ38

3.4028
*10ˆ38

m s−2 10 ms Acceleration measure-
ment in z-axis direction

r4_gyro_rad_x single -3.4028
*10ˆ38

3.4028
*10ˆ38

rad s−1 10 ms Gyro measurement
about x-axis

r4_gyro_rad_y single -3.4028
*10ˆ38

3.4028
*10ˆ38

rad s−1 10 ms Gyro measurement
about y-axis

r4_gyro_rad_z single -3.4028
*10ˆ38

3.4028
*10ˆ38

rad s−1 10 ms Gyro measurement
about z-axis
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Table 4: Interfaces of the MATLAB/Simulink Model.

Port Name Data
Type

Min.
Value

Max.
Value

Unit Sample
Time

Description

r4_magn_x single -3.4028
*10ˆ38

3.4028
*10ˆ38

kg A−1 s−2 10 ms Magnetometer mea-
surement of magnetic
induction in x-axis
direction

r4_magn_y single -3.4028
*10ˆ38

3.4028
*10ˆ38

kg A−1 s−2 10 ms Magnetometer mea-
surement of magnetic
induction in y-axis
direction

r4_magn_z single -3.4028
*10ˆ38

3.4028
*10ˆ38

kg A−1 s−2 10 ms Magnetometer mea-
surement of magnetic
induction in z-axis
direction

r4_h_lidar single 0.3 3.4028
*10ˆ38

m 10 ms Distance measured by
LiDAR sensor (range
only measurable from
0.3-12 m)

r4_static_press single 0 3.4028
*10ˆ38

mbar 10 ms Calibrated static pres-
sure measured by Pix-
hawk barometer sen-
sor

r4_static_press
_temp

single 0 3.4028
*10ˆ38

◦C 10 ms Temperature mea-
sured by Pixhawk
barometer sensor

r4_rho single 0 3.4028
*10ˆ38

kg m−3 10 ms Air density calculated
by Pixhawk barometer
sensor

r4_diff_press single -3.4028
*10ˆ38

3.4028
*10ˆ38

Pa 10 ms Calibrated differential
pressure

r4_i_airspeed single -3.4028
*10ˆ38

3.4028
*10ˆ38

m s−1 10 ms Indicated airspeed cal-
culated by airspeed
sensor

r4_t_airspeed single -3.4028
*10ˆ38

3.4028
*10ˆ38

m s−1 10 ms True airspeed calcu-
lated by airspeed sen-
sor

r4_air_temp single -50 200 ◦C 10 ms Air temperature mea-
sured by airspeed sen-
sor

r8_lat double -90 90 deg 500 ms Latitude measured by
GPS sensor

r8_lon double -180 180 deg 500 ms Longitude measured
by GPS sensor
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Table 4: Interfaces of the MATLAB/Simulink Model.

Port Name Data
Type

Min.
Value

Max.
Value

Unit Sample
Time

Description

r4_alt_msl_gps single -3.4028
*10ˆ38

3.4028
*10ˆ38

m 500 ms Altitude above mean
sea level measured by
GPS sensor

r4_alt_ellips_gps single -3.4028
*10ˆ38

3.4028
*10ˆ38

m 500 ms Altitude above ellip-
soid measured by GPS
sensor

r4_v_n_gnd_gps single -3.4028
*10ˆ38

3.4028
*10ˆ38

m s−1 500 ms North velocity mea-
sured by GPS sensor

r4_v_e_gnd_gps single -3.4028
*10ˆ38

3.4028
*10ˆ38

m s−1 500 ms East velocity mea-
sured by GPS sensor

r4_v_d_gnd_gps single -3.4028
*10ˆ38

3.4028
*10ˆ38

m s−1 500 ms Down velocity mea-
sured by GPS sensor

r4_course_gps single 0 2π rad 500 ms Course measured by
GPS

r4_q0 single -1 1 1 10 ms Quaternion element 0
calculated by EKF

r4_q1 single -1 1 1 10 ms Quaternion element 1
calculated by EKF

r4_q2 single -1 1 1 10 ms Quaternion element 2
calculated by EKF

r4_q3 single -1 1 1 10 ms Quaternion element 3
calculated by EKF

r4_theta single −π π rad 10 ms Pitch angle calculated
by EKF

r4_phi single −π π rad 10 ms Roll angle calculated
by EKF

r4_psi single −π π rad 10 ms Yaw angle calculated
by EKF

r4_windspeed
_north

single -3.4028
*10ˆ38

3.4028
*10ˆ38

m s−1 10 ms North wind speed cal-
culated by EKF

r4_windspeed
_east

single -3.4028
*10ˆ38

3.4028
*10ˆ38

m s−1 10 ms East wind speed cal-
culated by EKF

u2_rc_1 uint16 982 2006 1 10 ms PWM input of 1st RC
channel

u2_rc_2 uint16 982 2006 1 10 ms PWM input of 2nd RC
channel

u2_rc_3 uint16 982 2006 1 10 ms PWM input of 3rd RC
channel

u2_rc_4 uint16 982 2006 1 10 ms PWM input of 4th RC
channel
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Table 4: Interfaces of the MATLAB/Simulink Model.

Port Name Data
Type

Min.
Value

Max.
Value

Unit Sample
Time

Description

u2_rc_5 uint16 982 2006 1 10 ms PWM Input of 5th RC
channel

u2_rc_6 uint16 982 2006 1 10 ms PWM Input of 6th RC
channel

u2_rc_7 uint16 982 2006 1 10 ms PWM Input of 7th RC
channel

u2_rc_8 uint16 982 2006 1 10 ms PWM Input of 8th RC
channel

b_rc_failsafe boolean 0 1 1 10 ms RC connection loss
flag

i4_rc_rssi int32 0 100 % 10 ms Receiver RC signal
strength indicator

r4_bat_discharged single 0 3.4028
*10ˆ38

mAh 10 ms Discharged capacity

r4_bat_remaining single 0 1 % 10 ms Remaining battery
time

r4_v_tail_r single -1 1 1 10 ms Actuator: right fin of V-
tail

r4_v_tail_l single -1 1 1 10 ms Actuator: left fin of V-
tail

r4_aileron single -1 1 1 10 ms Actuator: aileron

r4_thrust single 0 1 1 10 ms Actuator: thrust

log_data_n single -3.4028
*10ˆ38

3.4028
*10ˆ38

1 10 ms Optionally loggable
data

When reviewing Tab. 4, special attention must be paid to the update rate of the GPS data and
the range of the LiDAR sensor. This range is between 0.3 m and 12 m, but the sensor will send
random values above 12 m, when it exceeds its upper range limit.

4.2 Linking of Inputs and Outputs

As an example, the Direct Law is already implemented in the MATLAB/Simulink template (see
Fig. 18). The Direct Law sets the actuators proportionally to the inputs, which are controlled
by the remote control.
To discuss the design of the template, it will be shown how the inputs and outputs can be
linked. Table 5 provides the name convention for setting the name prefix of the used inports
and outports.

Table 5: Inport and Outport Name Convention
Data Type Float64 Float32 Int32 Int16 Uint16 Boolean

Name Prefix r8 r4 i4 i2 u2 b
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RC_Input_Normalisation Subsystem: The first subsystem (see Fig. 19) normalises the
PWM signal inputs from the remote control. The remote control channels must be allocated
manually in the remote control menu (see Sec. 1.2). Here, the first 4 channels of the remote
control are configured to control the actuators in the following order:

1. Thrust

2. Elevator

3. Aileron

4. Rudder

Normalisation	from	RC	PWM	to	-1	...	1

Thrust	Mapping	from	-1	...	1	to	0	...	1

Switch	Inputs
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rc_switch_2
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Figure 19: Subsystem RC_Input_Normalisation.

As shown in Ta. 4, the first 8 RC inputs are defined as uint16 data type with a range between
982 and 2006. Therefore, the PWM signals need to be converted into a floating point format.
This is done by data type conversion blocks, which are placed on the left side.
The blocks inside the first purple frame (placed on the left side) and the second purple frame
(placed at upper right side) convert the outputs to ranges between 0 and 1 for the thrust signal
and to values between −1 and 1 for elevator, aileron and rudder signals. The blocks inside
the third purple frame (placed at the right bottom side) are implemented here to show how a
switch for turning signals on and off could look like.
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Direct_Law Subsystem: This subsystem sets the signals of elevator, aileron and rudder to
the actual deflection in rad.

Tail_Conversion Subsystem: Here, the signal Eta (η) sets the V-tail flight control surfaces to
a pitching moment, while the signal zeta (ζ) sets the V-tail flight control surfaces to a yawing
moment. When both control surfaces are used, deflection angles are set by superposition.
The coordinate system is right-handed with the z-axis pointing downwards.

Output_Calibration Subsystem: This subsystem (see Fig. 20) shall stay the last subsystem
for calibrating the outputs. A short description of how to calibrate outputs can be found inside
the subsystem. The calibration is needed to set the null position in line with the airfoil camber
line. At least one further position needs to be measured to calibrate the deflection of flight
control surfaces. In the provided set, the outputs are already pre-calibrated.

Thrust
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Elevator	left

Elevator	right

1
r4_v_tail_r

1
v_tail_r
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2
r4_v_tail_l

3
r4_xi

4
r4_thrust

2
v_tail_l

(rad)

3
xi

(rad)

4
thrust

(1)

Figure 20: Subsystem Output_Calibration.

4.3 C++ Code Generation of the Simulink Model

MATLAB/Simulink is able to generate C++ code from created Simulink models if the required
software packages are installed. This requires four steps:

1. Installing required Software Add-Ons: If the software add-ons are not already pre-
installed, the software packages MATLAB Coder and Simulink Coder need to be in-
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stalled. Inside the Simulink integrated development environment (IDE), the installation
menu can be found by clicking Get Add-Ons as shown in Fig. 21.

Figure 21: Simulink Add-Ons and Hardware Support Packages.

2. Installing required Hardware Support Packages: As already described in Fig. 12, the
used microcontroller is an STM32. Mathworks provides hardware packages that support
C++ code generation for STM32 microcontrollers. By clicking Get Hardware Support
Packages as shown in Fig. 21, the Simulink hardware support menu will be opened.
There, the support package Embedded Coder Support Package for ARM Cortex-M
Processors can be found and needs to be installed (see Fig. 22).

Figure 22: ARM Cortex-M Add-On.

3. Restart MATLAB: MATLAB has to be restarted. After the restart, the installed support
package will automatically set MATLAB/Simulink preferences to the configuration that
can be seen in Fig. 23.

4. Generating C++ Code: For the last step, the Simulink model has to be saved as
controller.slx.

Note: It is necessary to exactly use this filename (controller.slx) when generating
code so that all function calls are working properly!

The code can then be generated by clicking Generate Code (see Fig. 23). When the
code generation is successful, MATLAB will show the Code Generation Report window
with details of the generated code (e.g. the path of the selected code generation folder);
otherwise the Diagnostic Viewer will be shown for debugging. To upload the generated
flight controller code to the Pixhawk, review and follow the steps described in Sec. 3.5.
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Figure 23: Settings for Code Generation.

4.4 Modelling Guidelines and Development Recommendations

Model driven development (MDD) with MATLAB/Simulink is characterised by finding a solution
to meet functionality, optimization and model-design requirements. General guidelines for op-
timization and best practices of model design can be found in the MathWorks Advisory Board
(MAB), among others.10 Guidelines to meet functionality requirements and to ensure confor-
mance of software standards can be found by using the MATLAB Model Advisor. The Model
Advisor provides, among others, information about supported blocks for code generation and
points out bad practices in the created Simulink Model.
With previous setups of the AlphaLink UAXS, the MATLAB Model Advisor i) did not always
cover all bad practices that led to malfunctioning code generation and, to some extent, ii)
labeled practices as wrong that were functioning just fine. Hence, the checks of the MAT-
LAB Model Advisor should be treated at individual review. For instance, in the Model Advisor
checks for Embedded Coder it is recommended to set the setting of Hardware Board to a spe-
cific model (default: none). When setting it to ARM-Cortex, code generation for C++ stops

10https://de.mathworks.com/solutions/mab-guidelines.html.
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working while it works just fine on the Pixhawk if the settings are set to none there. To be
clear: the hardware package for ARM-Cortex-M Boards itself must be installed to generate
code, but it is just working for C++ code generation when it is set to none. Another example
is that the Model Advisor does not point out that the Pow block leads to malfunctioning code.
After generating code, the pow function is inaccurately casted to type double, when single is
selected. The typecast needs to be changed manually in the generated code in this case.

Some helpful basic guidelines for code generation that take into account most common soft-
ware standards - by no means exhaustive - are listed below.

• Using consistent software environment: It is recommended to use consistent soft-
ware releases for MATLAB, Simulink and C++ compilers.

• Avoiding usage of MATLAB Function blocks: Custom created MATLAB blocks are
supported for code generation. Nevertheless, MATLAB functions may be hard to debug
because Simulink will only point out blocks that cause errors. If MATLAB functions are
used, a maximum number of 60 lines shall not be exceeded.

• Avoiding usage of time-continuous blocks: Real-time operating systems (RTOS)
such as NuttX can only process time discrete signals. Hence, the usage of continu-
ous time blocks must be avoided.

• Avoiding usage of Mux blocks for bus signals: Avoid using Mux blocks to create bus
signals. Always use Bus Creator blocks to allocate signals by name.

• Avoiding floating point comparison for equality/inequality: Due to rounding errors,
most floating-point numbers end up being slightly imprecise. This leads to equality test
failing and therefore must be avoided.

• Avoiding usage of memory intensive blocks: Memory intensive blocks such as Fuzzy
Logic controllers shall not be used, when generating code for embedded platforms
such as microcontrollers. The reason is that the generated code will not fit in the stack
due to the high amount of floating-point variables required.

• Set default data type: MATLAB/Simulink sets default data type to double. This is
sometimes a problem for code generation as not all targets can support these types of
variables and it can be hard to change these once a model is created. Having this in
mind will save a lot of time trying to find problematic typecasts. The provided template
has already set single as default data type.

• Using C/C++ code compatible names: Names that use single-byte alphanumeric char-
acters (a-z, A-Z, 0-9) and single-byte underscore (_), are compatible with C++ code
generation. A maximum length for names of 32 characters should not be exceeded.
Deviating from this naming practice may lead to errors.

• Avoiding division by 0: Division blocks must always be protected from division by 0.

• Avoiding algebraic loops: They are problematic for code generation as stated by Math-
works. If the algebraic loop cannot be avoided, use a Delay block to break up the loop.

• Avoiding usage of If blocks without else condition: An alternative (else) path must
always be provided for Simulink.
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